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Abstract. Sub-Planck phase-space structures in the Wigner function of the
motional degree of freedom of a trapped ion can be used to perform weak
force measurements with Heisenberg-limited sensitivity. We propose methods
to engineer the Hamiltonian of the trapped ion to generate states with such
small-scale structures, and we show how to use them in quantum metrology
applications.
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1. Introduction

The determination of small parameters has recently acquired a substantial improvement through
quantum measurement, as it is now known that using probes prepared in judiciously chosen
quantum states can increase their sensitivity to perturbations. As a consequence, quantum
metrology has become a subject of great practical interest (for a recent review, see [1]). The
estimation of an unknown parameter of a quantum system typically involves a three-step process:
the initial preparation of a probe in a known quantum state, the interaction between the probe and
the system to be measured, and a final read-out stage, where the state of the probe is determined.
Typical situations are those when the system imprints an unknown parameter x onto the probe
through a unitary perturbation Ûx = exp(−i x Ĝ), where the generator Ĝ is a known Hermitian
operator.The unknown small parameterxof the system can be inferred by comparing the input and
output states of the probe. This framework captures two important tasks in quantum metrology:
(i) high precision phase measurements x = θ, where Ûθ generates a rotation in phase space of
the quantum state of the probe around the origin, and (ii) detection of weak forces that induce a
linear displacement x = s of the quantum state of the probe in some direction of phase space.

The accuracy of the parameter estimation is limited by the physical resources involved in the
measurement. Techniques involving probes prepared in quasiclassical states, such as coherent
states of light, have sensitivities at the standard quantum limit (SQL), also known as the shot-
noise limit in the phase detection situations. Indeed, in the usual dimensionless phase-space used
in quantum optics the Wigner distribution of a coherent state, with n̄ mean number of photons,
is centred at a distance �√

n̄ from the origin, with a width 1/2. Thus, the associated input and
output states are distinguishable (approximately orthogonal) when their respective phase-space
distributions are displaced by a minimal distance 1/2 � O(n̄0) from one another, i.e., the SQL
for weak displacement measurement does not depend on the number n̄ of photons involved in
the measurement. For phase detection the smallest noticeable rotation occurs when the centres of
the phase-space distributions of the input and output states have an angular distance (1/2)/

√
n̄

measured from the origin, i.e., the SQL for phase measurement scales as 1/
√

n̄.
Using the same physical resources in addition to quantum effects, such as entanglement

or squeezing, sub SQL precision can be achieved [2]–[8]. This has been recently achieved
experimentally using multi-qubit states formed by entangled internal degrees of freedom of
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photons (polarization entanglement) [9]–[12], and of trapped ions (spin entanglement) [13]–[15].
Measurements with sub-SQL precision can also be achieved with continuous variables, such as
the amplitude/phase of a photon trapped in a QED cavity, or the centre-of-mass motion of trapped
ions [16]. Such spatial modes, that can be approximately described as harmonic oscillators,
can be prepared in nonclassical quantum states, e.g. superpositions of M coherent states, that
possess sub-Planck structures on theirWigner functions. The connection, first conjectured in [17],
between the smallest phase-space structures and the Heisenberg-limited sensitivity in quantum
metrology of these states was shown in [18]. The approximate orthogonality that allows to
distinguish the input and output quantum states of the probe occurs when the peaks (valleys) of
the sub-Planck structures of one come on top of the valleys (peaks) of the sub-Planck structures of
the other. The minimal linear displacement required for this destructive interference is �1/

√
n̄,

defining the so-called Heisenberg limit (HL) for weak force detection. For rotations the sub-
Planck phase-space structures of the Wigner function of the input state have to be at a typical
distance �√

n̄ from the origin, thus the minimal rotation angle is �1/n̄, that defines the HL scale
for phase detection. Hence, the linear size of the sub-Planck structures sets the sensitivity limit
on a probe, and states that saturate the limit on the smallest phase-space structures can allow one
to attain Heisenberg-limited sensitivity.

Also in [18], a general strategy to use quantum superpositions of M coherent states of the
probe for Heisenberg-limited precision measurements of weak forces and phase measurement
was described. It consists of entangling the oscillator with a two-level system (TLS). The process
consists of four stages: (i) an initial product state of the oscillator and the TLS have to be unitary
evolved up to an intermediate state of the composite system where the state of the oscillator
is a superposition of M coherent states or a statistical mixture of these types of states, (ii) the
perturbation to be measured acts on the oscillator, (iii) the initial unitary entangling evolution
is inverted in order to transfer the information of the perturbation to the population of the TLS,
and finally (iv) the populations of the TLS are measured. A concrete implementation of this
strategy was suggested in [18] in the context of cavity QED (that can be extrapolated to trapped
ions): a two-level atom gets entangled with the cavity mode through the (resonant or dispersive)
Jaynes–Cummings interaction in such a way that, when the atom reaches the centre of the cavity,
the photon field is a quantum superposition of two coherent states (M = 2). This ‘cat state’
has sub-Planck oscillations parallel to the line joining the two coherent states, and is therefore
Heisenberg-limited sensitive to perturbations that induce displacements that are perpendicular
to that line. After the perturbation is applied, the Jaynes–Cummings dynamics is inverted
(e.g., following the steps described in [19] for the resonant case), and the atomic populations are
measured once the atom exits the cavity. It is worth noting that, from an experimental point of
view, the resonant case is more convenient than the dispersive one because the interaction times
are much shorter. An analysis of the decoherence processes [18] that may affect this scheme
shows that the resonant implementation (and, to a lesser extent, the dispersive one) should be
within reach of cavity QED and ion trap experiments.

However, one disadvantage of the M = 2 states used in [18] is that their sensitivity gradually
degrades as the direction of the perturbing force moves away from the direction orthogonal
to the line joining the two coherent states. Higher order (M > 2) superpositions of coherent
states on a circle do not suffer from these limitations. There have been a number of proposed
schemes to generate such states using conditional measurements. Some of these proposals are
in the context of cavity QED [20]–[23], and involve a sequence of two-level atoms sent through
the cavity, and projective measurements performed on the TLS. Similar strategies have been
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proposed in the literature in the context of trapped ions [24, 25]. But in all of these schemes the
non-unitary projection operation prevents the inversion of the field-atom dynamics needed in our
measurement method [18] to transfer the information of the perturbation (originally imprinted
on the field right after the projection takes place) onto the atomic populations. Alternatively,
M > 2 coherent state superpositions can be generated via the dispersive Jaynes–Cummings
Hamiltonian, as proposed in [26]. The problem with this scheme is the large interaction time,
that in general will be much longer than typical experimental decoherence times.

The aim of this paper is to propose ways for measuring weak forces at the HL using higher
order (M > 2) coherent state superpositions with a single trapped ion. Our scheme does not
involve intermediate conditional measurements of the state of the ion, allowing for the inversion
of the field-ion dynamics, as discussed above. Also, we show that the total interaction time
needed for weak force detection can be made much smaller than typical decoherence times.
We will concentrate on how to prepare probes with M = 4 (‘compass state’) [17] and how to
use them to measure small displacements (weak force detection). Our set-ups can also be used
to measure small rotations in phase space (phase detection) by simply adding an appropriate
displacement before the application of the perturbation, as described in [18].

The paper is organized as follows. In section 2, we apply the results in [18] to derive
expressions for the sensitivity to perturbations of the M = 4 compass state, that we use later
in our strategy for weak force measurements. In section 3, we briefly review the engineering
of the ion–laser interaction for a single trapped ion that we use to generate the compass states.
Section 4 contains two possible approaches for generating compass states: the first one uses
conditional quantum gates between the internal and the motional degrees of freedom of the ion,
and the second one uses a nonlinear ion–laser engineered interaction. In section 5, we implement
the scheme for measuring weak forces with Heisenberg-limited sensitivity. Finally, Section 6
summarizes our central results.

2. Heisenberg-limited quantum metrology with continuous variables

In this section, we present a short summary of the basic ideas, introduced in [18], to perform
continuous variable based quantum metrology at the HL by using sub- Planck phase-space
structures present in circular coherent states of a harmonic oscillator (the probe). We apply these
ideas to the case of compass states, that are the main subject of this study.

We will focus on perturbations that induce a small phase-space linear displacement of
the quantum state of the probe, for example when a small force is exerted onto the probe. The
unitary operator describing such a displacement is D̂(β) = eβâ†−β∗â, where β is an arbitrary small
displacement in phase-space with a magnitude |β| � |α|. In this approximation, the unitary
operation D̂(β) takes any coherent state |α〉 to eiIm(βα∗)|α + β〉 ≈ e2iIm(βα∗)|α〉. Perturbations
inducing small rotations R̂(θ) = eiθâ†â(θ � 1) in phase space can be treated in a similar way,
as described in [18].

Circular coherent states are a special kind of states of harmonic oscillators, formed by the
superposition of M coherent states equidistantly placed on a circle C of radius |α|. Examples of
these states are the Schrödinger cat state (M = 2), considered in detail in [18] for weak force
and phase measurements, and the compass state

|cat4〉 ≡ N
2

(eiγ1|iα〉 + eiγ2 | − α〉 + eiγ3| − iα〉 + eiγ4|α〉), (1)
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Figure 1. The Wigner functions in the α plane for: (a) the compass state |cat4〉
with α = 3, and (b) the displaced compass state D̂(β)|cat4〉 = |cat4(so)〉 where
β = eiϕsoα/|α| is a displacement of magnitude |β| = so = π/2 b+(ϕ)|α| in the
direction relative to α given by ϕ = π/3. Here b+(ϕ) = cos(ϕ) + sin(ϕ). The black
arrow in (b) indicates the direction of the displacement β. In (c), we display the
product of the unperturbed and the perturbed Wigner functions. When performing
the integration over the α plane of this product of Wigner functions, that is equal
to the overlap |〈cat4|cat4(so)〉|2, the negative contributions (in blue) cancel the
positive ones (in red), leading to quasiorthogonality.

that we consider in this paper. Here γk are arbitrary phases, and N = 1 + O(e−|α|2) is a
normalization constant. When |α| � 3, it is a good approximation to take N = 1, and we will
assume this is the case in the following considerations.

Figure 1 depicts the Wigner function of the compass state and shows the sub-Planck phase-
space structures, that oscillate with a typical wavelength ∼1/|α|. These structures are responsible
for the Heisenberg-limited sensitivity of these states for quantum metrology applications.
Indeed, the smallest linear displacement needed to distinguish the unperturbed |cat4〉 from the
perturbed |cat4(s)〉 ≡ D̂(β)|cat4〉 state of the probe (and, therefore, to attain quasi-orthogonality)
is s ∼ 1/|α|, for any direction β = eiϕsα/|α|. As it was shown in [18], the sub-Planck structures
of the Wigner functions of the circular states determine the oscillatory behaviour of the fidelity
function f(s) ≡ |〈cat4|cat4(s)〉|2, that for the compass state reads

f(s) ≈ 1

16

∣∣∣∣∣
4∑

k=1

eiIm(βα∗
k) 〈αk|αk + β〉

∣∣∣∣∣
2

= e−s2
cos2(b+(ϕ)|α|s) cos2(b−(ϕ)|α|s), (2)

where αk ≡ eiϕkα and b±(ϕ) ≡ cos(ϕ) ± sin(ϕ) (ϕ is the angle between β and α). Here, we
have neglected contributions 〈αl|αk + β〉 ≈ O(e−|α|2) for l 
= k, that is a good approximation
for |α| � 3, and we have used that 〈αk|αk + β〉 = e−|β|2 exp{iIm(βα∗

k)}. When e−s2 ≈ 1, valid
for |β| = s � 1, we can re-write the fidelity function as

f(s) ≈ cos2 (b+(ϕ)|α|s) cos2 (b−(ϕ)|α|s). (3)

Note that f(s) does not depend on the phases γk that enter in the definition of the compass state
|cat4〉 in equation (1). We emphasize that equation (3) is valid when |α| � 3 and |β| = s � 1.
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Figure 2. The fidelity f(s) ≡ |〈cat4|cat4(s)〉|2 as a function of the magnitude of
the linear displacement s = |β| (full line) where β = eiϕsα/|α| with ϕ = π/3.
The amplitude of the coherent state is α = 3. The circles (◦) correspond to points
given by the approximation in equation (2). The dashed line is the approximation
in equation (3). The displacement corresponding to quasi-orthogonality, i.e., so in
equation (4), is indicated in the plot.

In figure 2, we can see the oscillatory behaviour of the fidelity f(s) as a function of the magnitude
of the linear displacement s = |β| with a typical wavelength ∼1/|α|. The minimal displacement
to achieve quasi-orthogonality, so, is defined as f(s0) = 0, and can be obtained from equation (3),
because this equation provides a good approximation to the exact fidelity function around s0,
as follows from figure 2. Thus, the minimal displacement to achieve quasi-orthogonality is
approximately given by

so ≈ π

2b(ϕ)|α| , (4)

where b(ϕ) ≡ max{|b+(ϕ)|, |b−(ϕ)|} (see figure 2). The scaling of so as 1/|α| implies that one
can detect displacement perturbations with Heisenberg-limited sensitivity. Note that b+(ϕ) and
b−(ϕ) are never simultaneously zero in the interval [0, 2π], which means that for any direction
of the displacement β there is a minimum (finite) displacement for which the unperturbed and
the perturbed compass states are quasi-orthogonal. Contrary to the cat state (M = 2), whose
HL sensitivity degrades as the direction of the perturbation β tends to the direction of α

(i.e., as ϕ → 0), compass states are HL sensitive for all directions ϕ of the perturbing force.
In a similar way, one can show that compass states have Heisenberg-limited sensitivity to rotation
perturbations, that is, the minimal rotation angle that can be detected is θ � s/|α| � 1/|α|2.
To achieve this sensitivity for rotation perturbations, the circular coherent state has to be first
translated in phase space so that the displaced circle C contains the origin of phase space [18].

The general scheme to measure a small unitary perturbation Ûx at the HL, described in [18],
involves entangling the probe with an ancillary system, a TLS, and it is summarized in figure 3.
The crucial point is to engineering the interaction Û between the probe and the TLS in such a
way that the information about the overlap between the unperturbed and perturbed probe states
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Figure 3. Circuit diagram to measure a small perturbation Ûx at the HL. The
probe is a harmonic oscillator and the ancilla a TLS. The entangling evolution Û

is such that |〈�|�〉|2 ≈ |〈cat4|cat4(x)〉|2, where |cat4〉 is the compass state defined
in equation (1), and |cat4(x)〉 = Ûx|cat4〉 the perturbed compass state (see text
for details).

can be inferred from measurements of the populations of the TLS. That is, starting with an initial
joint state |�i〉 = |0〉 ⊗ |g〉, where |0〉 is the vacuum state of the probe and |g〉 the lower state of
the ancilla, the evolved states, with and without the perturbation applied, |�〉 = ÛxÛ|�i〉 and
|�〉 = Û|�i〉 respectively, must satisfy |〈�|�〉|2 ≈ |〈cat4|cat4(x)〉|2. Then, one needs to invert
the unitary evolution Û to obtain a final entangled state of the composite system

|�f 〉 =
√

Pe|e, �e
S〉 +

√
Pg|g, �

g

S〉. (5)

The probabilities Pe and Pg = 1 − Pe of measuring the TLS in levels e and g respectively,
contain information about the perturbation x. As mentioned in [18], this strategy can also be
used to measure the Loschmidt echo, which quantifies the sensitivity of a quantum system to
perturbations. Also, similar hybrid continuous variable-qubit systems have been proposed for
quantum information processing and quantum computation [27, 28].

3. Ion trap: basic excitation schemes

Let us consider a single ion confined inside a harmonic trap, say an elliptical Paul trap [29, 30].
In good approximation the quantized motion of the ion centre-of-mass along each spatial
dimension can be described by a quantum harmonic oscillator. When the ion is illuminated by
laser light quasi-resonant to one of its electronic transitions its motional degrees-of-freedom can
be coupled to the electronic ones via photon-momentum exchange. The laser excitation can be
done in several different ways, giving rise to a large number of possible interaction Hamiltonians
between electronic and motional degrees-of-freedom (for a review, see for instance [31]). Here we
will be interested in two basic types of laser excitation in a situation where the motional sidebands
can be spectroscopically well resolved. Moreover, the laser geometries of the excitation schemes
we shall consider below are such that only the quantized motion along one of the principal axes
of the trap is effectively excited.

The first excitation scheme of interest is the Raman excitation of a dipole-forbidden
electronic transition between two hyperfine electronic states, on resonance to a given motional
sideband. This can be done via the off-resonant excitation of an intermediary electronic level by
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Figure 4. Electronic (internal) and motional (external) energy levels (not to scale)
of a trapped ion, coupled by two Raman lasers. (a) corresponds to the first red
sideband transition between two electronic levels (equation (6) with k = 1), and
(b) corresponds to the virtual excitation of an electronic level (in this case |e〉),
governed by the Hamiltonian in equation (18).

two laser fields of adequate frequencies (see figure 4(a)). In this case, the interaction Hamiltonian,
in the interaction picture, is given by [32]:

ĤI = 1
2h̄|	0| eiφσ̂+f̂ k(n̂, η) âk + H.c., (6)

where the operator-valued function f̂ k(n̂, η) depends on the motional number operator n̂ ≡ â†â,

f̂ k(n̂, η) = e−η2/2
+∞∑
l=0

(iη)2l+k

l!(l + k)!

n̂!

(n̂ − l)!
, (7)

and we define n̂!/(n̂ − l)! ≡ [n̂ − (l − 1)] [n̂ − (l − 2)] . . . n̂. The operators σ̂+ and â are the
electronic flip operator between the states |g〉 and |e〉 and the annihilation operator of a quantum
of the harmonical oscillator describing the quantized motion of the ion along the direction of one
of the principal axes of the trap, respectively. 	0 = |	0| eiφ is the effective Raman Rabi frequency
and k corresponds to the excitation of the kth lower motional sideband (red sideband transition,
depicted in figure 4(a) for k = 1). For the quantized motion along each one of the principal axes,
the Lamb–Dicke parameter η can be defined as η = (δkL · u)�u0, where �u0 is the spread of
the motional wavefunction in the ground state of the harmonic potential which describes the
motion along the principal axis, and u is a unit vector giving the direction of the principal axis
being considered. The vector δkL = kL1 −kL2 is the difference of the wavevectors of the two
Raman lasers. The value of the Lamb–Dicke parameter η can be changed via the geometry of
the laser beams in two different ways. The first one consists of changing the modulus of the
vector δkL. This modulus reaches its minimum value when the laser beams are co-propagating
and its maximum value when the laser beams are counter-propagating. The second way consists
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Figure 5. Possible laser geometry of the ion excitation for maintaining the
projection of the vector δkL along the directions of the two principal axes v

and w always very small. Since the wavevectors of the two laser beams are on
the plane v = 0, the projection of the vector δkL along the direction v is zero, and
along the direction w it is very small compared to (�w0)

−1.

of changing the direction of the vector δkL with respect to the unit vector u. So, via the laser
geometry, it is possible to change the value of η in some extent. In particular, using co-propagating
laser beams, one can reach the Lamb–Dicke regime where η � 1.

In order for the vibrational motion of the ion along the other two principal axes to be
decoupled from the electronic degree-of-freedom, it is important that the Lamb–Dicke parameters
corresponding to the harmonic motion along those axes be zero or very small (cf for example [33]).
In such a situation, the one-dimensional Hamiltonian given in equation (6) holds. The above
condition is satisfied when the projection of the vector δkL along the direction of those axes is
zero or very small compared to (�u0)

−1. This can always be fulfilled, without losing the freedom
of controlling the Lamb–Dicke parameter along the direction of the principal axis of interest, if
the laser geometry of the ion excitation is, for instance, the one shown in figure 5. For any value
of the angle θ, the projection of δkL along the direction v is zero, whereas the projection of δkL

along the direction w is always very small compared to (�u0)
−1 since |kL1| ≈ |kL2 |.

Note that when η � 1 the function f̂ k(n̂, η) ≈ (iη)k. In this case, the excitation of the carrier
resonance (k = 0) leads to the interaction Hamiltonian:

ĤI = 1
2h̄|	0| eiφσ̂+ + H.c. (8)

This Hamiltonian allows one to perform rotations of the electronic state of the ion according to
the evolution operator

Ûθ(�v) ≡ e−iĤI t/h̄ = cos

(
θ

2

)
− i sin

(
θ

2

)
(vxσ̂x + vyσ̂y), (9)

where θ = |	0|t, vx = cos(φ), vy = −sin(φ) and σ̂x, σ̂y are the Pauli operators. Our weak force
measurement scheme involves reversing every unitary evolution applied in the process. Hence,
the inverse evolution Ûθ(−�v) can be implemented simply by changing by φ → φ + π the phase
of the effective Raman Rabi frequency 	0.
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In situations where the value of the parameter η is not extremely small (η ≈ (0.1–0.2))
terms of order η2 should be taken into account in equation (7). In this case, for carrier excitation
(k = 0), the function f̂ 0(n̂, η) can be written as:

f̂ 0(n̂, η) ≈ A0 + A1n̂, (10)

with A0 = 1 − η2/2 and A1 = −η2. Under this condition, the choice of φ = 0 in the
Hamiltonian (6) leads to the evolution operator

R̂c(θ̄) ≡ e−iĤI t/h̄ = eiνσ̂x eiθ̄σ̂xn̂, (11)

where ν = −|	0|tA0/2 and θ̄ = −|	0|tA1/2. The action of this operator corresponds to a rotation
in phase-space of the motional state of the ion conditioned to its electronic state:

R̂c(θ̄)|α〉|↑x〉 = eiν |α eiθ̄〉|↑x〉, R̂c(θ̄)|α〉|↓x〉 = e−iν |α e−iθ̄〉|↓x〉, (12)

where |α〉 represents a coherent motional state, |↑x〉 ≡ (|e〉 + |g〉)/√2 and |↓x〉 ≡ (|e〉 − |g〉)/√2
are eigenstates of the σ̂x Pauli operator, and |e〉 and |g〉 represent, respectively, the upper and
lower electronic states of the transition driven by the lasers (eigenstates of the σ̂z Pauli operator).
The inverse operation R̂c(−θ̄) can be implemented choosing φ = π.

The dependence of the Hamiltonian (6) on the motional number operator n̂ is determined
by the function f̂ k(n̂, η). Some control of this dependence is obtained by changing the value
of the Lamb–Dicke parameter η. However, this control is rather limited and it is of interest to
find ways of extending the possibilities of tailoring the n̂-dependence of the Hamiltonian (6).
As has been shown in [34], some extra tailoring can be done by exciting the same vibrational
sideband of the ion by N pairs of Raman lasers of arbitrary effective Rabi frequencies 	j and
Lamb–Dicke parameters ηj (j=1, . . . , N). Remember that the parameter ηj, corresponding to
a given pair of Raman lasers, can be controlled by varying the geometry of those laser beams.
Under such excitation scheme the resulting interaction Hamiltonian maintains the general form
of the Hamiltonian (6). The combined effect of the N laser pairs appears in the operator function
f̂ k(n̂), which is transformed in the engineered function f̂

(e)
k (n̂). This function can be written in

the form of a Taylor series,

f̂
(e)
k (n̂) =

∞∑
p=0

Apn̂
p, (13)

where N of the coefficients Ap can be independently fixed by the values of the N Rabi frequencies
	j (for details, see [34]). The free parameters ηj can be used to optimize the coupling between the
electronic and the vibrational degrees of freedom. This excitation scheme opens the possibility
for engineering a large number of interaction Hamiltonians.

In the next section, we will be interested in engineering the function

f̂
(e)
k (n̂, η) = A0 + A1n̂ + A2n̂

2 + O(η8
maxn̂

4), (14)

where only the values of A2 and A3 = 0 have to be fixed independently. This can be done with
N = 2 pairs of laser beams in Raman configuration. If the two laser pairs excite the carrier
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resonance (k = 0), the resulting interaction Hamiltonian will be

ĤI = 1
2h̄|	L| eiφσ̂+f̂

(e)
k (n̂, η) + H.c. (15)

For φ = 0 in the above equation one gets the following Kerr-type evolution operator

V̂ (φ2) ≡ e−iĤI t/h̄ = e−iφ0σ̂x e−iφ1σ̂xn̂ e−iφ2σ̂xn̂
2
, (16)

withφj = |	L|Ajt/2 (j = 0, 1, 2).We index V̂ just withφ2 because, when applying this operation
to a trapped ion, only the value taken by φ2 will be of importance. Note that the evolution generated
by V̂ (φ2) may be inverted by setting φ = π in equation (15).

The second basic type of laser excitation scheme we are interested in is the Raman excitation
of one motional sideband via the virtual excitation of a given electronic transition (see figure 4(b)).
In this excitation scheme only the motional degree-of-freedom is excited conditioned on the
occupation of a specific electronic level. In the example of figure 4(b), if the ion is in the
electronic state |g〉 nothing happens, whereas if the ion is in the electronic state |e〉 its vibrational
motion will be excited. In this case the interaction Hamiltonian, describing the action of the
lasers on the motional degree-of-freedom, is given by [33, 35]

ĤI = 1
2h̄|	0| eiφf̂ k(n̂, η) âk + H.c. (17)

When the first motional sideband is excited (k = 1) in a situation where η � 1, the above
Hamiltonian simplifies to

ĤI = 1
2h̄|	0| eiφâ + H.c. (18)

The time-evolution generated by the Hamiltonian (18) is equivalent to action of the displacement
operator D̂(α)

Û(t) ≡ e−iĤI t/h̄ = D̂(− 1
2η|	0| e−iφt). (19)

For this reason, the Hamiltonian (18) can be used to coherently displace the motional state of the
ion in phase-space conditioned on the occupation of a given electronic level. In order to stress
the dependence of the action of the above Hamiltonian on the electronic state we will represent
the evolution operator (19) by D̂c(α).

4. Dynamical generation of the compass state in ion traps

According to the general procedure to measure small perturbations, summarized in figure 3, the
measurement of weak forces that couple to the motional degree of freedom of a trapped ion
involves the dynamical generation of an intermediate maximally entangled state between the
electronic (the ancilla) and the motional (the probe) degree of freedom of the ion, i.e.,

|�〉 = 1√
2

|cat4〉 |↑〉 +
1√
2

|cat4〉 |↓〉, (20)

where |↑〉, |↓〉 are two orthogonal internal states of the ion, and |cat4〉, |cat4〉 are compass states
(equation (1)) of the centre-of-mass motion of the ion. In the following we describe two ways to
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Figure 6. Circuit diagram to generate the compass state via quantum gates.
Starting with an initial state |�i〉 = |0〉 ⊗ |g〉 of a trapped ion, where |0〉 is the
ground state of its centre-of-mass motion, and |g〉 is the lowest of the two hyperfine
electronic states considered, this sequence of unitary operations generates an
output state |�〉 of the form in equation (20), with |↑〉 ≡ |e〉 and |↓〉 ≡ |g〉, and
|cat4〉 and |cat4〉 compass states. The unitary evolution Û in figure 3 is composed
of this sequence of operations.

dynamically generate these states starting from an initial state of the form |�f 〉 = |0〉 ⊗ |g〉, where
|0〉 is the ground state of the centre-of-mass motion of the ion and |g〉 is the lower electronic state
considered. The first approach combines quantum gates over the internal states and conditional
linear operations over the centre-of-mass motion, described in section 3. The second approach
uses the engineering of a non-linear ion–laser interaction of the Kerr-type, also described in
section 3.

4.1. First approach

In this approach the set of unitary operations that leads to the state in equation (20) is described
in figure 6. The first type of unitary operations in the sequence are the quantum gates Ûθ(�v),
given by the carrier θ-pulses in equation (9) that rotate the internal states of the ion around the
Bloch vector �v by an angle θ. We only perform rotations around the Bloch vector �v = (0, vy, 0)

that can be carried out by choosing the phase of the effective Raman Rabi frequency 	0 equal
φ = −π/2. Setting the time duration of the pulse θ = π/2 = |	0|tπ/2 we can implement Ûπ/2(vy),
that performs π/2-rotations, and with θ = π = |	0|tπ we implement Ûπ/2(vy), that performs
π-rotations. The other type of unitary operations in the sequence of figure 6 affect the motional
state of the ion conditioned on the state of the electronic degree of freedom. D̂c(ᾱ) given in
equation (19) displaces a coherent state of the vibrational motion of the ion if the internal
electronic part is in the upper state |e〉, and does nothing if the electronic part is in the ground state.
That is, D̂c(ᾱ)|α〉|e〉 = eiIm(ᾱα∗)|α + ᾱ〉|e〉, and D̂c(ᾱ)|α〉|g〉 = |α〉|g〉. The conditioned operation
R̂c(π/4) in figure 6 performs phase space rotations of a coherent state of the vibrational motion
of the ion according to equation (12).

The final entangled state |�〉 of the sequence of unitary operations of figure 6 is of the form
given in equation (20), with |↑〉 = |e〉 and |↓〉 = |g〉, and the vibrational motion of the ion in
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Figure 7. Circuit diagram to generate the compass state via engineered Kerr
nonlinearity V̂ . The input state is the same as in figure 6. The output state |�〉
has the form in equation (20), with | ↑〉 ≡ | ↑x〉 and | ↓〉 ≡ | ↓x〉, and |cat4〉 and
|cat4〉 compass states. The unitary evolution Û in figure 3 is composed of this
sequence of operations.

compass states of the form

|cat4〉 = 1
2(e

iν|iα〉 + e−iν|−α〉 − eiν|−iα〉 + e−iν|α〉),
|cat4〉 = 1

2(e
iν|iα〉 − e−iν|−α〉 − eiν|−iα〉 − e−iν|α〉),

that are equally oriented in phase space.
A realistic estimation for the total time needed to perform the unitary operations in this

approach can be done using the experimental parameters in [35]. For the Ûπ/2(vy) operation the
Raman Rabi frequency is of the order 	0/2π ≈ 250 kHz, so the π-pulse duration is about 1 µs.
This implies a total time for single qubit operations of about 2.5 µs. The conditional displacement
D̂c(ᾱ) of amplitude |ᾱ| = η	0τ/2 can be implemented with a Lamb–Dicke parameter η ≈ 0.15
and an effective strength of the Raman laser configuration 	0/2π ≈ 300 kHz. Let us suppose
that we create compass states with amplitude |α| ≈ 3, thus for the maximum displacement in the
process ᾱ = 2α we have a duration time τ ≈ 21 µs. Therefore, the total time for the conditional
displacements in the process is approximately 42 µs. For the duration of the conditional rotation
R̂c(θ̄) we have θ̄ = π/4 = 	0η

2tπ/4/2, and using also η ≈ 0.15 and 	0/2π ≈ 300 kHz, we get
tπ/4 ≈ 27 µs. Hence, the total time needed to generate the state |�〉 is approximately 72 µs.

4.2. Second approach

In this approach the set of unitary operations that leads to the state in equation (20) is described
in figure 7. The displacement operator D̂c(α) acting on the vibrational state of the ion can be
implemented along the lines of section 3, where now the Raman excitation of one motional
sideband is via the virtual excitation of the electronic transition with the lower state |g〉. The
engineered Kerr operation V̂ = e−iφ0σ̂x e−iφ1σ̂xn̂ e−iφ2σ̂xn̂

2
generates all the circular coherent states

of the vibrational degree of freedom for φ2 = π/M [36]. In particular, we can see that the compass
state (M = 4) is generated because e±i(π/4)n̂2|α〉 = 1/2(e±i(π/4)(|α〉 − |−α〉) + (|iα〉 + |−iα〉)).
The total unitary operation is Û = V̂ (π/4)D̂c(α), and the output state |�〉 is of the form given in
equation (20), with the electronic part as |↑〉 = |↑x〉 and |↓〉 = |↓x〉, and the vibrational motion
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of the ion in compass states of the form

|cat4〉 = e−iφ0

2
[e−iπ/4(|ᾱ〉 − |− ᾱ〉) + |iᾱ〉 + |− iᾱ〉],

|cat4〉 = − eiφ0

2
[eiπ/4(|α̃〉 − |− α̃〉) + |iα̃〉 + |− iα̃〉].

Here α̃ = αeiφ1 , and ᾱ = αe−iφ1 . These two compass states are rotated with respect to each other
in an angle 2φ1. If it is desired to have the compass states equally oriented in phase space, as in
the first approach, a conditional rotation could be performed.

The engineering of the interaction Hamiltonian can be accomplished with N = 2 pairs
of Raman lasers (with Lamb–Dicke parameters ηj and Rabi frequencies 	j, j = 1, 2) driving
resonantly the carrier (k = 0) transition. Indeed, one can choose the coefficient of the quadratic
n̂2 part in equation (14) to be A2 = 1, and impose that the cubic coefficient identically vanishes,
A3 = 0. This sets the time t∗ when the compass state is generated as φ2 = |	L|A2t

∗/2 = π/4.
The compass state is formed at the time t∗ irrespective of the values that the phases φ0 and φ1

take. Thus, we do not require any fixed values for A0 and A1 in the interaction Hamiltonian,
simplifying the engineering design to only two pairs of Raman lasers. Selecting the set of Lamb–
Dicke parameters ηj for the two pair of lasers as {0.4, 0.35} yields for the relative Rabi frequencies
	j/	L the values {−520, 1154}. This requires that the Rabi frequencies of the two pair of lasers
be related as |	2| ≈ 2.2|	1|, and have a π phase shift with respect to each other. The coefficients
A0 and A1 are dependent quantities that can be easily obtained, and are equal to A0 ≈ 605
and A1 ≈ −57. In order to minimize t∗ we choose the highest experimentally available Rabi
frequencies, |	1| ≈ 5 MHz and |	2| ≈ 11 MHz. Therefore, the reference Rabi frequency 	L

is |	L| ≈ 9.5 × 103 s−1, and the time t∗ at which the compass states is generated is equal to
t∗ = π/2|	L| ≈ 165 µs. The total time needed to generate the final state |�〉 in figure 6 is equal
to the duration of the conditional displacement (approximately equal to 10 µs for |α| ≈ 3, see
previous subsection), plus the time t∗ for the compass state generation, that is a total time of
approximately 175 µs. Although the value of the Rabi frequency 	2 is rather high, this does
not preclude the spectral resolution of the motional sidebands, since only the carrier transition is
excited. In this situation, the condition for resolving the motional sidebands is η|	| � ν, where ν

is the trap frequency.As reported in [29], trap frequencies in excess of 50 MHz have been reached
in elliptical traps. In such traps, our parameters η = 0.4 and |	2| = 11 MHz would satisfy the
condition η|	| � ν.

5. Weak force detection scheme

Once the intermediate state of the form given in equation (20) is created, either by means of
the first or second approaches, the probe is subjected to the perturbation to be measured. We
are interested in weak classical forces that couple to the centre-of-mass motion of the ion, and
thus cause a small linear displacement of the motional quantum state of the ion, irrespective
of its internal electronic state. This can be simulated by applying the displacement operator
D̂c(β = eiϕsα/|α|) on the vibrational state of the ion with two pairs of Raman lasers, each of them
inducing an equal blue sideband transition on the |g〉 and |e〉 states (see section 3). Alternatively,
a uniform electric field oscillating near the trap frequency results in a displacement perturbation

New Journal of Physics 8 (2006) 276 (http://www.njp.org/)

http://www.njp.org/


15 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

acting equally on both |g〉 and |e〉 [37]. The general form of the created perturbed state is

|�〉 = 1√
2

|cat4(s)〉 |↑〉 +
1√
2

|cat4(s)〉 |↓〉. (21)

After reversing the evolution along the lines described in sections 3 and 4, we get the final
entangled state of the form in equation (5). In the first approach, we have

√
Pg|g, �

g

S〉 = (A1|0〉 + A2|−ᾱ〉 + A∗
2|ᾱ〉)⊗|g〉, (22)

where ᾱ ≡ 2αei(π/4) and A1 = A1(|α|s) ≡ cos(b+(ϕ)|α|s) × cos(b−(ϕ)|α|s), A2 = A2(|α|s) ≡
(e−i2 sin(ϕ)|α|s − ei2 cos(ϕ)|α|s)/4, with b±(ϕ) ≡ cos(ϕ) ± sin(ϕ). Hence, neglecting contributions of
the order O(e−|α|2) the probability to measure the ion in the internal state |g〉 is given by

Pg(s) = A2
1(|α|s)

(
1 + 2

|A2(|α|s)|2
A2

1(|α|s)
)

, (23)

where we recognize in A2
1(|α|s) the approximation in equation (3) for the fidelity function f(s) ≡

|〈cat4|cat4(s)〉|2. Thus, Pg(s) exhibits the characteristic oscillatory behaviour with a typical
wavelength ∼1/|α| that allows, after inverting the relation in equation (23), the measurement of
s with HL precision.

In order to invert the function Pg(s) to obtain the small displacement s we have to know
the prior information that 0 � s � s0, where s0, given in equation (4), is the first zero of Pg(s).
This is not a restrictive condition since we have the flexibility of setting up the value of |α| in
the experiment in order for s0 = π/2b(ϕ)|α| to be an upper bound of the expected displacement.
A good estimation of the unknown parameter s requires repeating the measurement several times.
The uncertainty in the determination of the true parameter s can be estimated if we observe that
after R repetitions the probability that the outcome |g〉 is obtained r times is given by a binomial
distribution, that in the large-R limit can be approximated by the Gaussian distribution in the
variable ξ ≡ r/R, which can be regarded as effectively continuous [18, 38]. In this limit the
probability distribution for the estimator s̃ = P−1

g (ξ ≡ r/R) is

P(s̃ ) ≈ 1√
2π�s̃2

e−(s̃−s)2/2�s̃2
, (24)

where the uncertainty of s̃ is

�s̃ =
√

(1 − Pg)Pg√
R|α|

∣∣∣∣∂Pg

∂y

∣∣∣∣
−1

ỹ=y

, (25)

where Pg ≡ Pg(s) and y ≡ |α|s. Hence, we see that we reach the Heisenberg precision
for displacement since

√
R|α| ≈ √

Rn̄ and Rn̄ is the total number of photons used in the
measurement.
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In the second approach, we have
√

Pg|g, �
g

S〉 = (B1|0〉 + B2| − 2α〉 + B3|(i − 1)α〉 + B4| − (i + 1)α〉) ⊗ |g〉, (26)

where

B1 ≡ (cos(a+
s |α|s) + cos(a+

c |α|s) + cos(a−
s |α|s) + cos(a−

c |α|s))/2,

B2 ≡ (cos(a+
s |α|s) − cos(a+

c |α|s) + cos(a−
s |α|s) − cos(a−

c |α|s))/2,

B3 ≡ i(e−i( π
4 +|α|2)(sin(a+

s |α|s) + sin(a−
c |α|s)) + ei( π

4 −|α|2)(sin(a−
s |α|s) + sin(a+

c |α|s)))/2,

B4 ≡ i(e−i( π
4 −|α|2)(sin(a+

s |α|s) − sin(a−
c |α|s)) + ei( π

4 +|α|2)(sin(a−
s |α|s) − sin(a+

c |α|s)))/2,

and we define a±
s ≡ 2 sin(ϕ ± φ1), a±

c ≡ 2 cos(ϕ ± φ1). In this case, the probability of measuring
the ion in the internal state |g〉 is

Pg(s) = 1
2 [1 + (cos(a+

s |α|s) + cos(a−
c |α|s) + cos(a−

s |α|s) cos(a+
c |α|s))/2], (27)

that also oscillates with a typical wavelength ∼1/|α|. Hence, following the steps described for
the first approach, we see that after inverting the function Pg(s) we get also in this case the
displacement s with HL precision.

6. Discussion

The scheme proposed in this paper for Heisenberg-limited sensitivity to perturbations with
continuous variables relies on the creation and manipulation of mesoscopic superpositions states
of the motional degree of freedom of a trapped ion, that possesses sub-Planck phase-space
structures. Any decoherence process, such as amplitude or phase decoherence affecting such
quantum superpositions, may destroy such small-scale structures, limiting the usefulness of
the method for quantum metrology applications. Although decoherence times for the motional
degree of freedom of a trapped ion prepared in the M = 2 circular coherent state (cat state)
have been measured in early experiments [37], such measurements are not available for higher
order M > 2 circular coherent states with more modern traps. However, decoherence times can
be estimated from the measured typical heating times of the vibrational degree of freedom of a
trapped ion, which are of the order of τh ∼ 100 ms (see [39] and references therein). We estimate
the typical vibrational decoherence time of a M circular coherent state as the ratio of the heating
time and the mean number of phonons n̄ contained in the state, namely τdec ∼ τh/n̄ [40]. Note
that this estimate is independent of the value of M. For example, for a vibrational compass state
with |α| ≈ 3 the decoherence time would be of the order of 10 ms. This decoherence timescale
should be much larger than the total interaction time for weak force detection (generation of the
compass state, application of the perturbation, and inversion of the dynamics), whether the first
or the second approaches for compass state generation is used. Assuming that the duration of
the displacement perturbation takes approximately 3 µs (compatible with the perturbations used
in [37] for engineering the ion’s reservoir), the total interaction time using the first approach
is around 150 µs, and using the second approach 353 µs. We see that the typical decoherence
times are much larger than the total interaction times in both approaches, pointing towards
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the experimental viability of the proposed scheme for quantum-enhanced measurements using
the motional state of a trapped ion.

The total interaction time for the compass state (M = 4) generation is shorter when the
first approach is implemented. It is worth noting, however, that the same tailored Hamiltonian
implemented with the second approach generates higher order (M > 4) circular coherent states
for shorter times, as the necessary generation time scales as φ2 = π/M. Such higher order
superpositions of coherent states also have sub-Planck phase-space structures, and in principle
could also be used for Heisenberg-limited quantum metrology following the same lines used for
the case of compass states.
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Pezzé L and Smerzi A 2005 Preprint quant-ph/0508158
[9] Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158

[10] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[11] Zhao Z, Chen Y-A, Zhang A-N, Yang T, Briegel H J and Pan J-W 2004 Nature 430 54
[12] Eisenberg H S, Hodelin J F, Khoury G and Bouwmeester D 2005 Phys. Rev. Lett. 94 090502
[13] Sackett C A, Kielpinski D, King B E, Langer C, Mayer V, Myatt C J, Rowe M, Turchette Q A, Itano W M and

Wineland D J 2000 Nature 404 256
[14] Meyer V, Rowe M A, Kielpinski D, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Phys. Rev.

Lett. 86 5870
[15] Liebfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J

2004 Science 304 1476
[16] Gilchrist A, Nemoto K, Munro W J, Ralph T C, Glancy S, Braunstein S L and Milburn G J 2004 J. Opt. B:

Quantum Semiclass. Opt. 6 S828
[17] Zurek W H 2001 Nature 412 712
[18] Toscano F, Dalvit D A R, Davidovich L and Zurek W H 2006 Phys. Rev. A 73 023803
[19] Morigi G, Solano E, Englert B-G and Walther H 2002 Phys. Rev. A 65 040102(R)
[20] Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992 Phys. Rev. A 45 5193
[21] Garraway B M, Sherman B, Moya-Cessa H, Knight P L and Kurizki G 1994 Phys. Rev. A 49 535
[22] Szabo S, Adam P, Janszky J and Domokos P 1996 Phys. Rev. A 53 2698
[23] Agarwal G S and Pathak P K 2004 Phys. Rev. A 70 053813

Pathak P K and Agarwal G S 2005 Phys. Rev. A 71 043823

New Journal of Physics 8 (2006) 276 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.75.2944
http://dx.doi.org/10.1103/PhysRevA.66.023819
http://arxiv.org/abs/quant-ph/0508158
http://dx.doi.org/10.1038/nature02552
http://dx.doi.org/10.1038/nature02493
http://dx.doi.org/10.1038/nature02643
http://dx.doi.org/10.1103/PhysRevLett.94.090502
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1103/PhysRevLett.86.5870
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1088/1464-4266/6/8/032
http://dx.doi.org/10.1038/35089017
http://dx.doi.org/10.1103/PhysRevA.73.023803
http://dx.doi.org/10.1103/PhysRevA.65.040102
http://dx.doi.org/10.1103/PhysRevA.45.5193
http://dx.doi.org/10.1103/PhysRevA.49.535
http://dx.doi.org/10.1103/PhysRevA.53.2698
http://dx.doi.org/10.1103/PhysRevA.70.053813
http://dx.doi.org/10.1103/PhysRevA.71.043823
http://www.njp.org/


18 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[24] Wallentowitz S and Vogel W 1996 Phys. Rev. A 54 3322
Moya-Cessa H, Wallentowitz S and Vogel W 1999 Phys. Rev. A 59 2920
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